
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2001; volume (number): 000–000

 Received 23 July 2001
Copyright © 2001 John Wiley & Sons, Ltd. Revised 30 Nov. 2001

A CORBA Commodity Grid Kit

Manish Parashar,1 Gregor von Laszewski,2 Snigdha Verma,1 Jarek Gawor,2 Kate
Keahey2, and Nell Rehn2

1The Applied Software Systems Laboratory, Department of Electrical and Computer Engineering, Rutgers,
 The State University of New Jersey, 94 Brett Road, Piscataway, NJ 08854-8058, U.S.A.
2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Submitted to:

Journals Production Department, John Wiley & Sons, Ltd.,
Chichester, West Sussex, PO19 1UD, U.K.

SUMMARY

This paper reports on an ongoing research project aimed at designing and deploying a CORBA Commodity
Grid (CoG) Kit. The overall goal of this project is to enable the development of advanced Grid applications
while adhering to state-of-the-art software engineering practices and reusing the existing Grid infrastructure.
As part of this activity, we are investigating how CORBA can be used to support the development of Grid
applications. In this paper, we outline the design of a CORBA Commodity Grid Kit that will provide a
software development framework for building a CORBA “Grid domain.” We also present our experiences in
developing a prototype CORBA CoG Kit that supports the development and deployment of CORBA
applications on the Grid by providing them access to the Grid services provided by the Globus Toolkit.

KEY WORDS: Grid Computing, CORBA, Globus, DISCOVER, Java CoG Kit

1. INTRODUCTION
The past decade has seen the emergence of computational Grids: infrastructures aimed
at allowing the programmer to aggregate powerful and sophisticated resources scattered
around the globe. To enable this goal, the Grid computing community has concentrated
on the creation of advanced services that allow access to high-end remote resources
such as batch systems at supercomputing centers, large-scale storage systems, large-
scale instruments, and remote applications. This effort has resulted in the development
of Grid services that enable application developers to authenticate, access, discover,
manage, and schedule remote Grid resources, but that are often incompatible with

2 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

commodity technologies. As a result, it is difficult to integrate these services into the
software engineering process adopted by most application developers.
At the same time, considerable advances have been made in developing and refining
commodity technologies for distributed computing. One such effort is the Common
Object Request Broker Architecture (CORBA) defined by the Object Management
Group (OMG), an independent consortium of vendors. CORBA specifies an open,
vendor independent and language independent architecture for distributed application
development and integration. Furthermore, CORBA defines a standard interoperability
protocol (i.e. GIOP and IIOP) that enables different CORBA implementations and
applications to interoperate and be portable across vendors. Key features of CORBA
such as high-level distributed computing model, vendor independence, and a strong
interoperability thrust makes it an attractive and popular distributed computing standard
and a serious candidate to be considered by application developers as part of the Grid
infrastructure.
Recently, a number of research groups have started to investigate Commodity Grid Kits
(CoG Kits) in order to explore the affinities of the Grid and commodity technologies.
Developers of CoG Kits have the common goal of developing mappings and interfaces
between Grid services and a particular commodity technology. We believe that CoG
Kits will encourage and facilitate the use of Grid technologies, while at the same time
leveraging the benefits of the underlying commodity technologies. Currently, CoG Kits
are being developed for the Java platform [28, 29], Java Server Pages [6], Python [8],
and Perl. This paper describes our experiments in defining the CORBA CoG Kit that
allows CORBA applications to access (and provide) services on the Grid. Such an
integration would provide a powerful application development environment for high-
end users and would create a CORBA “Grid domain.”
In this paper we first give a brief overview of the Grid and its architecture and
introduce the services and protocols that we intend to integrate in our CORBA CoG Kit
[27]. We then briefly outline the requirements, advantages, and disadvantageous of
CORBA technologies from the viewpoint of Grid developers. Next, we propose an
architecture that supports access to Grid functionality as part of our CORBA CoG Kit,
and we present the design, implementation, and application of a prototype. In the final
section, we present our conclusions and identify areas for further activities.

2. THE GRID

A CORBA Commodity Grid Kit 3

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

The term “Grid” has emerged in the past decade to denote an integrated distributed
computing infrastructure for advanced science and engineering applications. The
fundamental Grid concept is based on coordinated resource sharing and problem
solving in dynamic multi-institutional virtual organizations . Besides access to a diverse
set of remote resources, services, and applications among different organizations, Grid
computing is required to facilitate highly flexible sharing relationships among these
organizations ranging from client-server to peer-to-peer. An example of a typical Grid
client-server relationship is a supercomputer centre in which a client submits jobs to the
supercomputer batch queue. An example of peer-to-peer computing is the collaborative
online steering of high-end (distributed) applications and advanced instruments [4, 23,
30].
Grids must support different levels of control ranging from fine-grained access control
to delegation and from single user to multi-user and collaborations, and different
services such as scheduling, co-allocation, and accounting. These requirements are not
sufficiently addressed by the current commodity technologies, including CORBA.
Although sharing of information and communication between resources are allowed, it
is not easy to coordinate the use of distributed resources spanning multiple institutions
and organizations. The Grid community has developed protocols, services and tools,
which address the issues arising from sharing resources in peer communities. The
community is also addressing security solutions that support management of credentials
and policies when computations span multiple institutions, secure remote access to
compute and data resources, and information query protocols that provide services for
obtaining the configuration and status information of the resources. Because of the
diversity of the Grid, however, it is difficult to develop an all-encompassing Grid
architecture.
Recently, a Grid architecture has been proposed [17] that comprises five layers:

• A fabric layer, which interfaces to local control including physical and logical
resources such as systems, files, or even a distributed file system.

• A connectivity layer, which defines core communication and authentication
protocols supporting Grid specific network transactions.

• A resource layer, which allows the sharing of a single resource.
• A collective layer, which allows resources to be viewed and operated on as

collections.

4 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

O
R

B

Application

Collective

Resource

Connectivity

Fabric

Application
 O

bjects Services: Naming
Trading, ...

Client Server

GIOP, IIOP

POA

Netw.

Figure 1: The Grid Architecture and CORBA (The figure on the left shows the Grid
architecture. The figure on the right shows how CORBA fits into the Grid
Architecture).

Table 1: Mapping of various CORBA-related technologies into the Grid layers.

Collective CORBA Services: Transaction, Trading Object,
Time, Security, Relationship, Query, Property,
Persistent Object, Notification, Life Cycle,
Licensing, Naming, Externalization, Event,
Concurrency, Collection

Resource POA
Connectivity GIOP, IIOP, GSI, SSL
Fabric Client, Server, Networks

http://www.omg.org/technology/documents/formal/transaction_service.htm
http://www.omg.org/technology/documents/formal/trading_object_service.htm
http://www.omg.org/technology/documents/formal/time_service.htm
http://www.omg.org/technology/documents/formal/security_service.htm
http://www.omg.org/technology/documents/formal/relationship_service.htm
http://www.omg.org/technology/documents/formal/query_service.htm
http://www.omg.org/technology/documents/formal/property_service.htm
http://www.omg.org/technology/documents/formal/persistent_object_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.omg.org/technology/documents/formal/life_cycle_service.htm
http://www.omg.org/technology/documents/formal/licensing_service.htm
http://www.omg.org/technology/documents/formal/naming_service.htm
http://www.omg.org/technology/documents/formal/externalization_service.htm
http://www.omg.org/technology/documents/formal/event_service.htm
http://www.omg.org/technology/documents/formal/concurrency_service.htm
http://www.omg.org/technology/documents/formal/collection_service.htm

A CORBA Commodity Grid Kit 5

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

• An application layer, which uses the appropriate components of each layer to

support applications.

Each of these layers may contain protocols, APIs, and software development kits
(SDKs) to support the development of Grid applications. This general layered
architecture of the Grid is shown in the left part of Figure 1.

3. CORBA FOR GRID COMPUTING

Researchers have expressed a growing interest in combining the functionality of Grid
technologies and CORBA since CORBA services can support the Grid architecture (as
is clear from Figure 1 and Table 1). There are additional reasons why CORBA appeals
to users; some of the most important ones are as follows:

• High-level, modular programming model: The CORBA interaction model, as
well as its services, provides a convenient environment for distributed
computation; CORBA hides the complexities of networking and provides
security mechanisms and other ready-made solutions. Programming in CORBA
not only speeds the development process but also results in systems with a high
reusability potential.

• Interoperability of heterogeneous components: Components implemented in
different languages can interact by specifying interfaces in the (language
neutral) Interface Definition Language (IDL).

• Location transparency: The CORBA distributed computing model hides the fact
that two components may be interacting remotely.

• Open standard: CORBA is vendor independent, which results in many
implementations on diverse platforms.

• Interoperability: CORBA defines mechanisms that allow solutions from
different vendors to interoperate.

• Legacy integration: Legacy applications can be cast as CORBA objects [26].

The interest in CORBA within the Grid community has led to a number of applications
[21, 22, 24, 26] seeking to combine the functionality of CORBA and the Globus
Toolkit [5]. Although these solutions work well to solve specific problems encountered
in individual applications, they lack generality and uniformity of approach. The

6 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

different CORBA Grid solutions are not necessarily compatible with each other, and
they require programmers to frame their solutions in terms of two different
programming models that are not always consistent. The purpose of our work is to
examine the affinities of these two models, as well as the breadth of functionality they
cover, and to define a consistent set of functionality that would fulfil the needs of
CORBA Grid applications.

We have identified two key scenarios in which users may want to combine the
functionality of the Grid technologies and CORBA:

1. A CORBA programmer may want to combine the CORBA programming model
and CORBA services with the functionality provided by the Grid.

2. A Grid programmer may want to access CORBA services not provided by the
Grid.

While we plan to address both scenarios, in this paper we focus on providing a high-
level CORBA interface to the Grid. We begin by defining a CORBA Grid computing
model and mechanisms for making Grid services accessible through the CORBA
programming interface.
Since CORBA defines both high-level interoperability (through high-level bridges) and
low-level interoperability (through GIOP and IIOP), and acknowledges their respective
advantages and disadvantages, we believe that our work on creating interoperability
between the Grid and CORBA architectures can benefit from such a dual approach.
Therefore, we will pursue two lines of investigation: a high-level approach and a low-
level approach. In the former, adding Grid functionality to CORBA is achieved by
wrapping CORBA interfaces around key Grid services as described in this paper. The
advantages of this approach are simplicity, modularity (i.e., the programmer can use a
subset of Grid services and functionality fulfilling the application requirements), and
the speed with which a system can be implemented and deployed. The disadvantages
are that the approach does not expose all features of CORBA. For example, consider
the security service; in this approach the Grid security mechanisms are accessed by
using security services present in CORBA, essentially requiring the presence of two
largely overlapping security models.
In the low-level approach the CORBA programming model is overlaid on a Grid-based
implementation. In this case the CORBA security service (including its interface, if

A CORBA Commodity Grid Kit 7

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

necessary) is extended to include Grid-based functionality. Within this approach we
plan to experiment with uniting models for specific services rather than presenting them
as external components. For example, rather than translating between two different
security models, we will consider whether they can interoperate at a lower level,
presenting a consistent interface to the user. Similarly, rather than presenting the Grid
Resource Allocation Manager (GRAM) [14] as an external service, we will consider
how it might fit within the CORBA activation mechanisms. The advantages of this
approach are that the programmer deals with one consistent model available through
familiar interfaces (CORBA mechanisms). The disadvantages are that this approach is
harder to implement and may involve extending many of the CORBA facilities beyond
the standard as defined today.
We believe that our final solution will incorporate both approaches to combining
CORBA and Grid. The low-level approach will provide the best, and in many cases
also the most efficient solution, whenever critical functionality or services present in
both Grid and CORBA need to be combined. On the other hand the high-level approach
is appropriate when optional Grid-specific functionality (for example, a replica service)
needs to be represented. We anticipate that our final solution will contain three kinds of
services: pure CORBA services (for example, the persistent state) combined Grid
CORBA services (for example, security, object adapters, and other critical services
with counterparts in both Grid and CORBA) and pure Grid services (for example, a
replica service).

4. ARCHITECTURE

A schematic view of the architecture of the CORBA CoG Kit is shown in Figure 2. The
CORBA ORB forms the middle tier, providing clients access to CORBA server objects
that implement services on the Grid. Our current implementation includes Grid services
provided by the Globus Project [5]. The Globus Toolkit provides an authentication
service as part of the Grid Security Infrastructure (GSI) [12, 16, 18], an information
service called Metacomputing Directory Service (MDS) [13, 20], a job submission
service called Grid Resource Allocation Manager (GRAM) [14], and data
storage/access service called Globus Access to Secondary Storage (GASS) [10]. Server
objects are wrappers around corresponding Globus services. Clients access these server
objects using the CORBA naming service, which maps names to object references. The
CORBA security service is used for authenticating clients and enabling them to interact

8 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

securely with server objects. The server objects notify clients of any status changes
using the CORBA event service. We are currently expanding the CORBA CoG Kit to
provide server objects for other services on the Grid such as DISCOVER [4, 23], or
NetSolve [9]. The goal is to provide uniform access to a pool of services that can be
used and composed by user applications. The definition of server objects for Globus
services is described in the following sections.

IIOP

DISCOVER / NETSOLVE /
ACTIVE DATA REPOSITORY SERVICES

MDSSERVER GATEKEEPER GASS
GLOBUS SERVICES

Client Application

ORB CORE Naming Service Event Service Security Service

GRID
SERVER
OBJECTS

MDS
Object

GRAM
Object

GASS
Object

GRID SERVER OBJECT
FOR

OTHER SERVICES

Figure 2: Overall Architecture of CORBA CoG Kit.

5. CORBA INTERFACES TO GLOBUS GRID SERVICES

In what follows we present the interfaces and mechanisms used by the CORBA CoG
Kit to provide access to services part of our architecture.

Grid Information Services

To support information services on the Grid, we have decided to develop an interface to
the Globus MDS. Although it is possible to develop a COS naming service to access
objects stored within the MDS, it is problematic because object definitions in the LDAP
(Light Weight Directory Access Protocol) [19] data model are only created at the time

A CORBA Commodity Grid Kit 9

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

of instantiation. Thus, it is much easier to provide a direct interface to MDS, returning
objects as in the Java CoG Kit [28, 29]. This approach is useful for those familiar with
Grid services. CORBA developers may provide their own custom-designed information
services based on the CORBA trader interface. We assume that application developers
will develop such application specific trader services. In what follows we describe the
interface to the MDS and provide an example trader service.

The MDS Server Object

The Metacomputing Directory Service provides the ability to manage and access
information about the state of a Grid. It enables read access to entities such as
computers, networks, and people. The MDS is based on a distributed directory and is
accessed through LDAP [19]. A Grid application can access information about the
structure and state of the Grid through the MDS. Information in the MDS is structured
using a standard data model consisting of a hierarchy of entities. Each entity is
described by a set of “objects” containing typed attribute-value pairs.

The CORBA MDS server object implements a simple interface that provides the
following functionality:

1. Establishing connection to the MDS server
2. Querying the MDS server
3. Retrieving results obtained from the MDS query
4. Disconnecting from the MDS server

At the back end, the CORBA MDS server object accesses Globus MDS using JNDI
(Java Naming and Directory Interface) [25] libraries, that is, it replicates the approach
used by the Java CoG Kit [28]. The IDL we have designed for this purpose is listed in
Figure 3. The data types returned by the calls to the MDS server are very specific to
the JNDI libraries. Since CORBA is a language-independent middleware, it is
necessary to map these JNDI specific data types into a generic data type. This mapping
is achieved by the structures (viz. Result, ListResult, MDSList, MDSResult) defined
within the MDS service object. For example, when the getAttributes() method is
invoked on the CORBA MDS server object, the JNDI libraries return an array of

10 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

module MDSService {
struct Result {

string id;
sequence<string> value;

};

typedef sequence<Result> MDSResult;
typedef sequence<string> Attributes;

struct ListResult {
string id;
MDSResult value;

};

typedef sequence<ListResult> MDSList;

interface MDSServer {
exception MDSException {

string mdsMessage;
string ldapMessage;

};

void connect (in string name, in long portno, in string username,
in string encrypted_password)

raises (MDSException);
void disconnect() raises (MDSException);

MDSResult getAttributes(in string dn) raises (MDSException);
MDSResult getSelectedAttributes (in string dn, in Attributes attrs)

raises (MDSException);

MDSList getList(in string basedn) raises (MDSException);
MDSList search(in string baseDN, in string filter, in long searchScope)

raises (MDSException);

MDSList selectedSearch (in string baseDN, in string filter, in Attributes attrToReturn,
in long searchScope) raises (MDSException);

}

Figure 3: The IDL for accessing CORBA MDS Service.

A CORBA Commodity Grid Kit 11

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

NamingEnumeration objects that have to be mapped into a customized Result data
variable. The process involves retrieving the id and attribute for each
NamingEnumeration object in this array as string types and then storing the string array
as the value variable in the Result object. An array of this Result object forms the
MDSResult data variable. Similarly, the MDSList data variable is created by mapping
the values returned by the search() and getList() MDS methods.

Grid Domain Trader Services

The CORBA trader service is used to store advertisements of services from remote
objects. In the CORBA CoG Kit, we can use the CORBA trader to provide customized
information services based on the requirements of the application. For example,
consider the creation of a trader that returns information about the number of free nodes
in the remote compute resources (Figure 4). Such a trader server has been successfully
prototyped and implemented as part of the Numerical Propulsion System Simulation
[22]. Traders may provide bridges between different information sources. They form
the basis for a more sophisticated information service within the Grid and can be used
to integrate various information sources not based on the MDS.

GlobusMachineTrader {
struct MachineType {

string dn;
string hn;
string GlobusContact;
long freenodes;
long totalnodes;

};

typedef sequence<MachineType> MachineTypeSeq;
…
interface GetMachineInfofromMDS {

void update_seq();
void initialize_trader();
void update_trader();
void refresh_trader();

};
};

Figure 4: A simple example for a CORBA trader service for accessing MDS
information.

12 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

Handling Grid Security in CORBA

Providing access to Grid security is an essential part of the CORBA CoG Kit. We base
our current implementation on the Globus Grid Security Infrastructure (GSI) [18]. GSI
provides protocols for authentication and communication and builds on the Transport
Layer Security (TLS) protocols [15]. GSI addresses single sign-on and delegation in
virtual organizations. Other features include integration with local security solutions,
and user-based trust relations while addressing cross-organizational security issues.
While using GSI we are able to use future enhancements provided by the Grid
community that deal with multiple CA structures, revocation lists, and community
authorization services. One can integrate Grid security at various levels of the CORBA
architecture. In order to provide portability across ORBs, we have not considered the
modification of the protocol stack. Instead we have placed an intermediary object
between the CORBA client and the Grid services. We refer to this intermediary as a
CORBA GSIServer object. Authentication is performed using the following three steps:

1. The client and the CORBA server mutually authenticate each other using the
CORBA security service (CORBASec) [2, 7, 11]. One of the basic requirements
for mutual authentication in CORBASec is to have private credentials, that is, a
public certificate signed by a trusted certificate authority (CA), at both the client
and server side. In our architecture, both the CORBA client and server use
Globus credentials where the trusted certificate authority is accepted by the
virtual organization.

2. As Globus services, such as GRAM [14] and GASS [10], only accept
connections from clients who have secure Grid credentials (a public certificate
signed by a trusted certificate authority), the CORBA client delegates the
CORBA GSIServer object to create a secure proxy object that has the authority
to communicate with other GSI enabled Grid services on the clients behalf.

3. After successful delegation other Grid service objects may use the secure proxy
object to invoke secure connections to the corresponding Globus services to
access their functionality.

In more detail, the process of delegation from the client to the CORBA server object
involves the following steps. First, the client sends over its public certificate in an
encoded form to the server object. Next, the server object generates a completely new

A CORBA Commodity Grid Kit 13

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

pair of public and private keys and embeds the public key it received from the client in
a certificate request. The certificate request is signed by the new private key and sent
across to the client. The client retrieves the public key from the certificate request and
from it generates a new certificate. This new certificate, called a proxy certificate, is
signed by the client’s original private key (not the one from the newly generated pair),
and is sent back to the server object in an encoded form. The server object thus creates
a chain of certificates where the first certificate is the proxy certificate, followed by the
client certificate and then the certificate of the CA. It can then send this certificate chain
to the gatekeeper as proof that it has the right to act on behalf on the client. The
gatekeeper verifies the chain by walking through it starting with the proxy certificate,
searching for trusted certificates and verifying the certificate signatures on its way. If
no trusted certificate is found at the base of the chain, the gatekeeper throws a
CertificateException error. The server object thus uses this certificate chain for
establishing a secure socket connection with the gatekeeper. The gatekeeper
authenticates the server object on behalf of the client and can accept the clients’ request
from the server. The IDL interfaces for establishing a secure connection are shown in
Figure 5.

module GSIService {
interface GSIServer{

typedef sequence<octet> ByteSeq;
void setClientCredentials(in ByteSeq certificate);
ByteSeq getCertificateRequest();
void setDelegatedCertificate(in ByteSeq certificate);

};
};

Figure 5: The IDL for accessing the CORBA GSI Service.

The methods in this interface are described below

• setClientCredentials(): This method is called by the client for sending it’s public
certificate to the server in an encoded form. The client can access this method
only after it has securely authenticated with the server.

14 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

• getCertificateRequest(): This method provides the client access to the certificate
request generated at the server end.

• setDelegatedCertificate(): Using the certificate request obtained from the server
the client generates a new certificate, called the proxy certificate, for delegating
the right to access the Globus services to the server. By invoking this method
the client can send the proxy certificate in an encoded form to the server.

Job Submission in Grids
The remote job submission capabilities provided by the CORBA CoG Kit uses the
Globus GRAM service [14]. Job submission through CORBA GRAM is protected by
authentication through GSI as described in the preceding section. The job submission
process consists of the following steps: First, the client authenticates with the CORBA
service object using CORBASec. After mutual authentication is successful, the client
subscribes to the CORBA event channel on which the server is listening. Next the client
gets a handle to the GSIServer object using the CORBA naming service, and delegates
the CORBA GSIServer object as described in the preceding section. Once delegation is
successful, the client obtains a reference to the GRAMServer object (using the CORBA
naming service) and submits a Globus job request consisting of the name of the
executable, the appropriate parameters, and the name of the resource on which the job
is to be executed. On receiving the request, the GRAMServer uses the secure proxy
object created by the GSIServer during delegation to initiate a secure socket connection
with the GRAM gatekeeper (see Figure 6). It then forwards the request to the
gatekeeper and waits for updates on the status of the job via the CORBA event channel.
The implementation of the GRAMServer object in the CORBA CoG Kit provides a
simple interface with the following methods (see Figure 7):

• jobRequest(): Once the delegation is successfully completed, the client can

request job submission on a remote resource by invoking this method on the
server.

• setProxyCredentials(): This method sets the reference to the secure proxy object
created by the GSIServer object.

Additionally we use the following data structure to monitor the status of the job:

A CORBA Commodity Grid Kit 15

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

• JobStatus: It is used by the CORBA event service to notify the client of status
changes. The structure consists of two string data types – the jobid and the
jobstatus. The jobid identifies the id of the submitted job, and the jobstatus
contains one of the following values – PENDING, DONE, ACTIVE, FAILED,
or SUSPENDED.

ORB

Globus
Gatekeeper

Proxy
Globus

Gatekeeper

ORB

GRAM
Client GRAM

IIOP over SSL

Figure 6: Job submission strategies provided by the CORBA CoG.

module GRAMService {
exception GramException{short errorcode;};

exception GlobusProxyException{short errorcode;};

struct JobStatus{
string jobid;
string currstatus;

};

interface GRAMServer{
typedef sequence<octet> ByteSeq;
void setProxytCredentials(in ByteSeq certificate);
void jobRequest(in string rsl, in string contact,

in boolean batchjob);
};

};

Figure 7: The IDL for accessing CORBA GRAM Service.

16 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

Data Transfer on the Grid
A frequent problem that needs to be addressed in Grid applications is to access remote
data - for example, when the application wants to pre-stage data on remote machines,
cache data, log remote application output in real time or stage executables on a remote
computer. In our current implementation we use the Globus GASS service for data
transfer between resources in Grids. The goal of GASS is not to build a general-purpose
distributed file system but to support I/O operations commonly required by Grid
applications. The strategy employed is to fetch the file and cache it on first read open,
and write it to disk when it is closed.

Client GASS
Server
Object

FTP,
GSIFTP
HTTP,
HTTPS

GASS Server

ORB

FTP,
GSIFTP
HTTP,
HTTPS

GASS Server

Figure 8: The CORBA CoG Kit interface to GASS.

The objective of the CORBA GASSServer object is to provide an interface to the
Globus GASS service as shown Figure 8. The client gets a handle to the GASSServer
object from the CORBA naming service, and this server object forwards the client’s
requests to the appropriate GASS servers using the protocol specified by the client.
GASS supports FTP, HTTP, HTTPS, and GSIFTP. Both the FTP and GSIFTP
protocols allow third-party file transfers; that is they allow file transfers from a sender
machine to a receiver machine to be initiated by an third initiator machine. Both the
sender and receiver machines have to provide a GASS server. Authentication is
performed using GSI. The methods defined by the CORBA GASS service interface are
shown in Figure 9.

https://penn.rutgers.edu:1022/~snigdha/

A CORBA Commodity Grid Kit 17

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

module GASSService {
interface GASSServer {

void setProxyCredentials();
void setSourceURL(in string sourceurl);
void setDestinationURL(in string destnurl);
void allowThirdPartyTransfer(in boolean value);
void URLcopy()

};
};

Figure 9: The IDL of the CORBA GASS Service.

6. APPLICATION OF THE CORBA CoG KIT
Many applications can benefit from a CORBA CoG Kit. The example with which we
have tested our toolkit is the Tportamr Application, which adopts the adaptive mesh
refinement technique to solve a simple two dimensional transport equation. To execute
this application using the CORBA CoG Kit, the application initially discovers the
resources available on the Rutgers University Grid by executing a query on CORBA
MDS service. The service connects to the Rutgers MDS server and retrieves the list of
machines that satisfy the structure and state of the query. From this list of available
machines, the toolkit selects a particular machine or a cluster of machines and prepares
it for executing the job. Since the simulation output must be transferred back to the
desktop interface, the output file has to be initially copied to the execution machine
using CORBA GASS service. This service can also be used for staging the application.
Once the files are transferred, the CORBA GRAM service is used for submitting the
job on the executing machine. Thus, by using the three basic services provided by the
CORBA CoG Kit, jobs can be executed, without requiring manual initialisation of the
ORBs, starting of services, and transferring of data files to the remote systems. The
pseudocode presented in Figure 10 illustrates how the CORBA Grid services are
accessed and the tportamr application is executed on a remote machine.

18 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

//Initialization of the orb
orb = org.omg.CORBA.ORB.init(args, props);

//After authentication of client and the server the reference to the event channel for communication between the client and the server
org.omg.CORBA.Object obj = orb.resolve_initial_references("EventChannelFactory");
EventChannelFactory f = com.ooc.OBEventChannelFactory.EventChannelFactoryHelper.narrow(obj);
EventChannel e = f.get_channel_by_id(“GlobusEventChannel”);

// Get a reference to Naming Service
obj = orb.resolve_initial_references("NameService");

// The naming service has a NamingContext named Globus which has references to all the CORBA Globus Services
org.omg.CORBA.Object nc1Obj = nc.resolve(“Globus”);

// Reference to GRAMService is obtained
org.omg.CORBA.Object implobj = globusctx.resolve(“GramService”);
GRAMServer gramserver = GRAMServerHelper.narrow(implobj);

// Reference to MDSService is obtained
org.omg.CORBA.Object implobj = globusctx.resolve(“MDSService”);
MDSServer mdsserver = MDSServerHelper.narrow(implobj);

//Reference to GASSService is obtained
org.omg.CORBA.Object implobj = globusctx.resolve(“GASSService”);
GASSServer gassserver = GassServerHelper.narrow(implobj);

// Connect to the MDSService and get a list of available machines
mdsserver.connect("grid1.rutgers.edu",389,"", "");
Result[] result;
java.lang.String strDN = "ou=grid1.rutgers.edu, o=Globus, o=Grid";
result = mdsserver.getAttributes(strDN);

//Search for an machines having particular structure
ListResult[] listresult=mdsserver.search("ou=grid1.rutgers.edu, o=Globus, o=Grid ","&((object-
class=GridComputeResource)(freenodes=64))“, “”, MDS.ONELEVEL_SCOPE);

//Prepare the data for experiment
// Transfer the output file from the desktop to the remote machine
gassserver.setSourceURL(“file://e:/output”);
gassserver. setDestinationURL(https://grid1.rutgers.edu/~snigdha/output);
gassserver.URLcopy();

// Delegate the server
gramserver.setClientCredentials(public_certificate.getEncoded());
byte[] newcertreq = gramserver.getCertificateRequest();
ByteArrayInputStream bis = new ByteArrayInputStream(newcertreq);
iaik.pkcs.pkcs10.CertificateRequest req = new iaik.pkcs.pkcs10.CertificateRequest(bis);
java.security.cert.X509Certificate proxy_certificate = proxy_sign(req);
gramserver.setDelegatedCertificate(proxy_certificate.getEncoded());

//Job Submission
String rsl = “&(executable=’Tportamr')(processors=64)”
String contact = listresult[0].id

//Submits the job and gets an update of the status of the job through the event channel
gramserver.jobRequest(rsl, contact , false);
orb.run()

Figure 10: Pseudocode showing the use of CORBA CoG Services.

A CORBA Commodity Grid Kit 19

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

This application can be also integrated with other services such as DISCOVER [4, 23].
DISCOVER allow users to collaboratively monitor and control application, access,
interact, and steer individual component objects; manage object dynamics and
distribution; and schedule automated periodic interactions. Other examples include the
control of advanced scientific instruments such as radio telescopes and synchrotron
rings, via their commercially available control infrastructure, using access through
CORBA objects. At many of these installations it will not be possible to install Globus
server side software but only to interface to it as a client.

7. STATUS

The current implementation of the CORBA CoG Kit provides MDS, GSI, GRAM, and
GASS services. In the case of GIS, we have concentrated on a direct interface to the
MDS. Previous effort has demonstrated that it is straightforward to generate specialized
trading services in CORBA. Once we have identified a suitable set of requirements
from different applications, we will develop for these application domain specific
trading services. The performance of the CORBA GRAM service with different ORBs
is currently being evaluated. We have also made significant progress in integrating the
CORBA CoG Kit with DISCOVER. The current status of the CORBA CoG Kit project
as well as the software can be obtained from
www.caip.rutgers.edu/TASSL/Projects/CorbaCoG/. Future activities will include
investigations of scalability, the interplay of the integration between CORBA and Grid
technologies, and comparisons for information exchange, either through massage
services or through remote object access.

8. CONCLUSION
This paper reports on an ongoing project aimed at designing, implementing and
deploying a CORBA CoG Kit. The overall goal of this project is to provide a
framework that will enable existing Grid computing environments and CORBA service
providers to interoperate. CORBA is an accepted technology for building distributed
applications and is widely used and supported by academia and industry. Its features
include a high-level modular programming model, availability of advanced services
(e.g. security, naming, trading, event, transaction, etc.) and readymade solutions,
interoperability, language independence, location transparency and an open standard,
making it a suitable candidate for developing Grid applications. Developing a CORBA

http://www.caip.rutgers.edu/TASSL/Projects/CorbaCoG/

20 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

CoG Kit facilitates this integration. The demand for such a CoG Kit has been expressed
by various projects ranging from the creation of CORBA based control systems for
advanced instruments to the collaborative interaction and computational steering of
very large numerical relativity and fluid dynamics applications. Our current efforts are
focused on enabling applications to combine and compose services on the Grid – e.g.
combining services provided by Globus, with the collaborative monitoring, interaction,
and steering capabilities provided by DISCOVER [4, 23]. For example a scientific
application can use CORBA CoG Kit to discover the available resources on the
network, use the GRAM Service provided by CoG to run the simulation on the desired
high end resource, and use DISCOVER web portals to collaboratively monitor, interact
with, and steering the application.

ACKNOWLEDGMENTS
We thank Brian Ginsburg, Olle Larsson, Stuart Martin, Steven Tuecke, David
Woodford, Isaac Lopez, Gregory J. Follen, and Robert Griffin for their efforts to
provide a C++ -based CORBA interface to Globus Services existing on NASA’s
Information Power Grid. We also thank Viraj Bhat for his contributions to the CORBA-
CoG project.
This work was supported in part by the National Science Foundation under Grant
Number ACI 9984357 (CAREERS), awarded to Manish Parashar; by the Mathemat-
ical, Information, and Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38; by the Defence Advanced Research Projects Agency under contract
N66001-96-C-8523; and by the NASA Information Power Grid program.

APPENDIX

Table A-1summarizes an evaluation of available ORBs. The evaluation is based on
some basic features relevant in the development of the CORBA CoG Kit. These
include OMG CORBA standard compliance, services provided, languages and
platforms supported, and cost [1].

A CORBA Commodity Grid Kit 21

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

Table A-1: Comparison of available ORBs, where $ indicates commercial license.

ORB OMG
Compliance

Services
Available

OS Prog.
Languages

POA Compatibility Cost

Orbix 2000 CORBA 2.3 All major
services
available

Win, Solaris,
Linux, HPUX,
AIX, Compaq

C++ &
JAVA

Yes $

OmniORB
3.0.3

CORBA 2.3 No Interface
Repository

Win, Solaris,
Linux, HPUX,
SGI IRIX

C++ Yes IONA orbix,
Visibroker, HP
ORB Plus

Free

Visibroker
4.5

CORBA 2.3 All major
services. For
security service
it requires
Borland
security service

Win, Solaris, Red
Hat Linux, HP-
UX, IBM AIX

Java, C++ Yes $

Orbacus 4 CORBA 2.3 Naming, Event,
Property &
Time Service

Win, Solaris, Red
Hat Linux, HP-
UX, IBM AIX

Java, C++ Yes $

JacORB
1.3.21

CORBA 2.3 All major
services. For
security service
it mentions
improved IIOP
over SSL

Linux, Win,
Unix

Java Yes

MICO, TAO,
Orbacus,
OrbixWeb,
VisiBroker, ORBit,
omniORB, Vitria
C++ and Java
ORBs

Free

ACE TAO CORBA 2.4 All major
services
including
portions of
aaecurity
service

Unix,
Win,
Linux

C++ Yes

Visibroker, Orbix,
JacORB, ORB
Express,
VisiBroker

Free

MICO
2.3.6

CORBA 2.3 All major
services.
Security service
is under
development

Solaris, IBM
AIX, HP-UX,
Linux, Digital
Unix, Ultrix, Win,
WinCE

C++ Yes Free

MICOSec Based on
Mico

Security service
Level2 Ver 1.7

Solaris,
Win,
Linux

C++ $

Fnorb 1.1 CORBA 2.0 Interface
Repository,
Naming Service

Unix,
Win95,
NT

Python No Free
for
non-$
use

ORBit
0.5.8

CORBA 2.2 All major
services
including
security service

Unix,
Linux,
Win

Mainly for
C & Perl.
Others are
C++, Lisp,

Yes Free

22 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

Pascal,
Python,
Ruby, TCL

REFERENCES

1. Adrion Secure System Design, Web Page, 2001, http://www.adrion.com.
2. CORBA Security Service Specification, 2001,

ftp://ftp.omg.org/pub/docs/formal/01-03-08.pdf.
3. The DISCOVER Project, 2001,

http://www.caip.rutgers.edu/TASSL/Projects/DISCOVER/Documents.html.
4. V. Mann and M. Parashar, Middleware Support for Global Access to Integrated

Computational Collaboratories , Proc 10th IEEE International Symposium on
High Performance Distributed Computing,(2001), 35-46.

5. Globus Web Page, 2001, http://www.globus.org.
6. The Grid Portal Development Kit, 2001,

http://dast.nlanr.net/Features/GridPortal/.
7. OMG Security, 2001,

http://www.omg.org/technology/documents/formal/omg_security.htm.
8. The Python CoG Kit, 2001, http://www.globus.org/cog.
9. D. C. Arnold and J. Dongarra, The NetSolve Environment: Progressing

Towards the Seamless Grid. Proc. International Workshop on Parallel
Processing, (2000).

10. J. Bester, I. Foster, C. Kesselman, J. Tedesco and S. Tuecke, GASS: A Data
Movement and Access Service for Wide Area Computing Systems. Proc.
IOPADS'99, (1999).

11. B. Blakley, R. Blakley and M. Soley, CORBA Security: An Introduction to Safe
Computing with Objects. The Object Technology Series. Addison-Wesley,

12. R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer and V.
Welch, Design and Deployment of a National-Scale Authentication
Infrastructure. IEEE Computer, (1999), 33 (12). 60-66.

13. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, Grid Information
Services for Distributed Resource Sharing. Proc. 10th IEEE International
Symposium on High Performance Distributed Computing, (2001),
http://www.globus.org.

http://www.adrion.com/
ftp://ftp.omg.org/pub/docs/formal/01-03-08.pdf
http://www.caip.rutgers.edu/TASSL/Projects/DISCOVER/Documents.html
http://dast.nlanr.net/Features/GridPortal/
http://www.omg.org/technology/documents/formal/omg_security.htm
http://www.globus.org/cog
http://www.globus.org/

A CORBA Commodity Grid Kit 23

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v.(n.):000–000

14. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith and
S.Tuecke, A Resource Management Architecture for Metacomputing Systems.
Proc. IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel
Processing, (1998), 62-82.

15. T. Dierks and C. Allen, The TLS Protocol Version 1.0, IETF, (1999),
http://www.ietf.org/rfc/rfc2246.txt.

16. I. Foster, N. T. Karonis, C. Kesselman and S. Tuecke, Managing Security in
High-Performance Distributed Computing. Cluster Computing, (1998), 1(1), 95-
107.

17. I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International J. Supercomputer Applications,
(2001), 15(3).

18. I. Foster, C. Kesselman, G. Tsudik and S. Tuecke, A Security Architecture for
Computational Grids. Proc. 5th ACM Conference on Computer and
Communications Security Conference, (1998), 83-92.

19. T. Howes, M. C. Smith, G. S. Good and T. A. Howes, Understanding and
Deploying Ldap Directory Services. Mac Millan, 1999, LDAPbook.

20. G. v. Laszewski, S. Fitzgerald, I. Foster, C. Kesselman, W. Smith and S.
Tuecke, A Directory Service for Configuring High-Performance Distributed
Computations. Proc. 6th IEEE Symposium. on High-Performance Distributed
Computing, (1997), 365-375.

21. The Advanced Computational Concepts Laboratory of the NASA Glenn
Research Center, Web Page, 2001, http://accl.lerc.nasa.gov/IPG/CORBA/.

22. I. Lopez, G. J. Follen, R. Gutierrez, I. Foster, B. Ginsburg, O. Larsson and S.
Tuecke, Using CORBA and Globus to Coordinate Multidisciplinary
Aeroscience Applications. Proc. NASA HPCC/CAS Workshop, (2000),
http://accl.lerc.nasa.gov/IPG/CORBA/NPSS_CAS_paper.html.

23. V. Mann, V. Matossian, R. Muralidhar, and M. Parashar, DISCOVER: An
Environment for Web-based Interaction and Steering of High-Performance
Scientific Applications. Concurrency and Computation: Practice and
Experience, (2001), 13(8-9), 737-754.

24. H. Prot, M. Bouet, V. Breton, S. Du, N. Jacq, Y. Legre, R. Medina, R. Metery
and J. Montagnat, A Virtual Laboratory for Bioinformatics on the GRID,
European Community document, (2001).

25. S. S. Rosanna Lee, JNDI API Tutorial and Reference: Building Directory-
Enabled Java Applications. Addison-Wesley, 2000.

http://www.ietf.org/rfc/rfc2246.txt
http://accl.lerc.nasa.gov/IPG/CORBA/
http://accl.lerc.nasa.gov/IPG/CORBA/NPSS_CAS_paper.html

24 Parashar, von Laszewski, Verma, Gawor, Keahey, Rehn

Copyright © 2001 John Wiley & Sons, Ltd. Concurrency Computat.: Pract Exper. 2001; v. (n.):000–000

26. J. Sang, C. Kim and I. Lopez, Developing CORBA based distributed scientific
applications from legacy FORTRAN applications. Proc. of HPCC
Computational Aerosciences (CAS), (2000).

27. S. Verma, M. Parashar, J. Gawor and G. von Laszewski, Design and
Implementation of a CORBA Commodity Grid Kit. Second International
Workshop on Grid Computing - GRID 2001, Spinger LNCS 2242, Denver,
(2001), 2-12, http://www.caip.rutgers.edu/TASSL/Papers/corbacog-gcw01.pdf.

28. G. von Laszewski, I. Foster, J. Gawor and P. Lane, A Java Commodity Grid
Kit. Concurrency and Computation: Practice and Experience, (2001), 13 (8-9).
643-662, http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf.

29. G. von Laszewski, I. Foster, J. Gawor, W. Smith and S. Tuecke, CoG Kits: A
Bridge between Commodity Distributed Computing and High-Performance
Grids. Proc. ACM 2000 Java Grande Conference, San Francisco, CA, (2000),
97-106, http://www.mcs.anl.gov/~laszewsk/papers/cog-final.pdf.

30. Y. Wang, F. D. Carlo, D. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I.
Foster, J. Insley, P. Lane, G. v. Laszewski, C. Kesselman, M.-H. Su and M.
Thiebaux, A High-Throughput X-Ray Microtomography system at the
Advanced Photon Source. Review of Scientific Instruments, 72 (4), 2062-2068.

http://www.caip.rutgers.edu/TASSL/Papers/corbacog-gcw01.pdf
http://www.globus.org/cog/documentation/papers/cog-cpe-final.pdf
http://www.mcs.anl.gov/~laszewsk/papers/cog-final.pdf

	INTRODUCTION
	THE GRID
	CORBA FOR GRID COMPUTING
	ARCHITECTURE
	CORBA INTERFACES TO GLOBUS GRID SERVICES
	Grid Information Services
	The MDS Server Object
	Grid Domain Trader Services
	Handling Grid Security in CORBA
	Job Submission in Grids
	Data Transfer on the Grid

	APPLICATION OF THE CORBA CoG KIT
	STATUS
	CONCLUSION
	ACKNOWLEDGMENTS
	APPENDIX
	REFERENCES

